

Phylogeny

[image: _images/Say%20Thanks-!-1EAEDB.svg]
 [https://saythanks.io/to/Ad115]An exploration on phylogenetic reconstruction algorithms.

In biological evolution one deals with entities that evolve in time.
Usually these entities can be represented by strings and the evolution
of these entities corresponds to changes in the corresponding string. For
example:

	An organism may be represented by it’s DNA sequence,

	or by a list of characteristics it has

	A protein can be represented by it’s nucleotide sequence,

	or by it’s sequence of aminoacids.

Although the current package was developed with the above examples in
mind, one can think of other similar cases when it would be useful.

The algorithms are based, in part, by the ones found in the books:

	Algorithms on Strings, Trees, and Sequences. by Dan Gusfield

	Computational Phylogenetics. An introduction to designing methods
for phylogeny estimation. by Tandy Warnow

Meta

Author: Ad115 [https://agargar.wordpress.com/] -
Github [https://github.com/Ad115/] – a.garcia230395@gmail.com

Project pages:
Docs [https://phylogeny.readthedocs.io] - @GitHub [https://github.com/Ad115/Phylogeny/] - @PyPI [https://pypi.org/project/phylogeny/]

Distributed under the MIT license. See LICENSE for more information.

Contributing

	Check for open issues or open a fresh issue to start a discussion
around a feature idea or a bug.

	Fork the repository on GitHub to start making your changes to a
feature branch, derived from the master branch.

	Write a test which shows that the bug was fixed or that the feature
works as expected.

	Send a pull request and bug the maintainer until it gets merged and
published.

Tutorial

Instalation

You can install the package from PyPI [https://pypi.org/project/phylogeny/]:

$ pip install phylogeny

Trees, sequences and distance matrices

The main objects we consider are sequences, trees and matrices.

As mentioned before, the entities, represented as sequences, evolve
forming trees. At every point of the evolutive process, we can have
define a ‘distance matrix’, whose entries are the distance between
sequences (a measure of their dissimilarity).

In the phylogeny reconstruction problem, we generally start with a set
of sequences that evolved from a common ancestor, or their pairwise
distance matrix, and the task is to infer, with the help of certain
model assumptions, the tree that generated the evolutionary process.

The Cavender-Farris-Neyman model

Given the nature of the reconstruction problem, an evolution model is
the guiding hand behind the inference process. The resulting tree
changes depending on the assumptions of the model.

A good model to study reconstruction algorithms is the
Cavender-Farris-Neymann (CFN) model, that consists of a random tree with
probabilities p(e) associated to every edge e of the tree. Under the CFN
model, every character of the sequence or ‘trait’ evolves down the tree
changing state on every edge according to the edge probability.

The library contains an implementation of the CFN stochastic tree model
for generating sequences from an ancestor.

>>> from phylogeny.models import CFN_Tree

Create a new random tree with 5 leaves.
>>> cfn = CFN_Tree(leaves=5)
>>> print(cfn)

Node: 0, substitution probability: 0
Node: 1, substitution probability: 0.35099470913056274
Node: 2, substitution probability: 0.12569731001404477
Node: 3, substitution probability: 0.4370228186219944
Node: 4, substitution probability: 0.36030277887942846
Node: 5, substitution probability: 0.4905304532735053
Node: 6, substitution probability: 0.04564697536250617
Node: 7, substitution probability: 0.4178421652970328
Node: 8, substitution probability: 0.2728144976941049

 /-3
 /1|
 | \-4
-0|
 | /-7
 | /5|
 \2| \-8
 |
 \-6

Evolve 5 traits through the tree
>>> sequences = cfn.evolve_traits([1,1,1,1,1])
>>> print(sequences)

{3: [0, 0, 1, 1, 0], 4: [1, 1, 1, 1, 1], 7: [1, 1, 1, 1, 1], 8: [1, 0, 0, 1, 1], 6: [1, 1, 1, 1, 1]}

>>> cfn.distance_matrix()

DistanceMatrix([[0. , 1.7, 4.7, 4.2, 1.8],
 [1.7, 0. , 4.3, 3.8, 1.4],
 [4.7, 4.3, 0. , 1.3, 2.9],
 [4.2, 3.8, 1.3, 0. , 2.4],
 [1.8, 1.4, 2.9, 2.4, 0.]], names=(3, 4, 7, 8, 6))

The clocklike evolution scenario

The most simple case of evolution is the one in which the evolution is
clocklike, that is, that all branches have the same length (the mutation
rate is constant over time). In this case, at a certain time, the tree
generated has the property that the distance from the root to each leaf
is the same.

If one has an ultrametric distance matrix (which represents clocklike
evolution), then there are several algorithms to handle the
reconstruction, 2 of which are implemented in the library:

>>> from phylogeny import DistanceMatrix

An ultrametric matrix
>>> ultrametric = DistanceMatrix(
 [[0, 8, 8, 5, 3],
 [8, 0, 3, 8, 8],
 [8, 3, 0, 8, 8],
 [5, 8, 8, 0, 5],
 [3, 8, 8, 5, 0]],
 names=['A', 'B', 'C', 'D', 'E']
)

>>> from phylogeny.reconstruction import infer_clocklike_tree1

>>> t = infer_clocklike_tree1(ultrametric)
>>> print(t)

 /-B
 /-|
\-C
/-A
/-
 \-| \-E
 |
 \-D

>>> from phylogeny.reconstruction import infer_clocklike_tree2

>>> t = infer_clocklike_tree2(ultrametric)
>>> print(t)

 /-D
 /-|
 | | /-A
 | \-|
--| \-E
 |
 | /-B
 \-|
 \-C

Clocklike reconstruction on the CFN model

Now we can try to apply the clocklike assumption to a CFN model.

Create a new random tree with 5 leaves.
>>> cfn = CFN_Tree(leaves=5)
>>> cfn.show()

[image: _images/cfn_tree.png]
Evolve traits through the tree
>>> sequences = cfn.evolve_traits([1]*10_000)

Get the distance matrix
>>> distances = DistanceMatrix.from_sequences(sequences)

Infer the tree
>>> t = infer_clocklike_tree1(distances)
>>> print(t)

 /-8
--|
 | /-5
 \-|
 | /-7
 \-|
 | /-3
 \-|
 \-4

We can see that the different branch lengths from the root to each leaf
confuses the algorithm and we get a tree that is not correct. (The
reconstruction thus depends mostly on branch length, not on the topology
of the original tree)

Clocklike reconstruction for biological evolution

Now we test the hypothesis on a simulation of biological microevolution.

Download from PyPI:
pip install cellsystem
>>> from cellsystem import CellSystem

The cell system will simulate cell growth
while tracking the steps in that process.
>>> system = CellSystem(init_genome='A'*70)

Initialize the first cell
in the middle of the grid
>>> system.seed()

Take 20 steps forward in time
>>> system.run(steps=5)

Stop logging the steps to the screen
>>> system.log['printer'].silence()
>>> system.run(steps=15)

New cell 0 added @ (50, 50)
Cell no. 0 migrating from site (50, 50) (father None)
 New site: (51, 49)
Cell no. 0 migrating from site (51, 49) (father None)
 New site: (51, 48)
Cell no. 0 dividing @ (51, 48)
 New cells: 1 @ (52, 48) and 2 @ (51, 48)
Cell no. 1 mutating @ site (52, 48) (father None)
 Initial mutations: []
 Initial genome: AA
 Final mutations: [(65, 'G')]
 Final genome: AAAGAAAA

Look at the real ancestry tree
>>> t = system.log.ancestry(prune_death=True)
>>> print(t)

 /-9
 /-|
\-10
/-7
 \-|
 \-8

Fetch the evolved DNA sequences
>>> cell_sequences = {cell.index:cell.genome for cell in system['cells'].alive_cells}

Get the distance matrix
>>> distances = DistanceMatrix.from_sequences(cell_sequences)

Inferr a tree under the clocklike assumption
>>> t = infer_clocklike_tree1(distances)
>>> print(t)

 /-10
--|
 | /-9
 \-|
 | /-7
 \-|
 \-8

We can see it works better for this data, although it is not quite
there.

The reconstruction problem when evolution is not clocklike

The reconstruction problem when evolution is not clocklike is so hard
that one can not even be sure of where the root of the tree goes!! So,
in the following, the trees will be fundamentally unrooted, that is, if
two trees differ only in the placement of the root, then we can say they
are equal.

The four point condition

It must be noted that for every tree there is a distance matrix but not
any matrix correspond to a tree, the matrices that do are called
‘additive’. A way to check if a matrix is additive is by checking the
Four Point Condition.

To explain the four point condition let’s say we have the following
unrooted tree:

1 -\ /- 3
 >--<
2 -/ \- 4

Let the distance between leaves a and b be D(a, b). Consider the
three following pairwise sums:

	D(1, 2) + D(3, 4)

	D(1, 3) + D(2, 4)

	D(1, 4) + D(2, 3)

The smallest of these sums has to be D(1, 2) + D(3, 4), since it covers all
the edges of the tree connecting the four leaves, EXCEPT for the ones on
the path separating 1 and 2 from 3 and 4. Furthermore, the two larger of
the three pairwise sums have to be identical, since they cover the same
set of edges.

The Four Point Condition is the statement that the two largest
values of the three pairwise distance sums are the same.

The library contains a check for additivity based on the four point
condition:

Let's take first a matrix that *is* additive
-- We take the matrix representation of a known tree.
>>> distances = cfn.distance_matrix()
>>> distances

DistanceMatrix([[0. , 0.5, 3.1, 1.5, 1.6],
 [0.5, 0. , 3.4, 1.7, 1.8],
 [3.1, 3.4, 0. , 2.4, 2.5],
 [1.5, 1.7, 2.4, 0. , 0.5],
 [1.6, 1.8, 2.5, 0.5, 0.]], names=(3, 4, 5, 7, 8))

>>> print("Distance matrix is additive: ", distances.is_additive())

>>> distances[2,3] += 1
>>> print("Altered matrix is additive: ", distances.is_additive())

Distance matrix is additive: True
Altered matrix is additive: False

The four point method

The four point method is based on the four point condition to
reconstruct a tree from a 4x4 distance matrix. We calculate the three
pairwise sums from the four point condition, we determine which of the
three pairwise sums is the smallest, and use that one to define the
split for the four leaves into two sets of two leaves each (remember
that if D(1,2)+D(3,4) is the smallest sum, then the induced tree must
be, in Newick notation, ((1,2),(3,4)).)

A test matrix to test the four-point method
L1 -\ /- L2
>--<
L3 -/ \- L4
>>> additive = DistanceMatrix([[0, 3, 6, 7],
 [3, 0, 7, 6],
 [6, 7, 0, 11],
 [7, 6, 11, 0]], names=['L1', 'L2', 'L3', 'L4'])

>>> from phylogeny.reconstruction import four_point_method

>>> tree = four_point_method(additive, names=additive.names)
>>> print(f"The associated tree is: {tree}")

The associated tree is:
 /-L1
 /-|
\-L3
/-L2
 \-|
 \-L4

The all quartets method

The all quartets method results from the repeated application of the
four points method and is useful to reconstruct larger trees.

Given an n×n additive matrix M with n ≥ 5 associated to a binary tree T
with positive branch lengths, we can construct T using a two-step
technique that we now describe.

In Step 1, we compute a quartet tree on every four leaves by applying
the Four Point Method to each 4×4 submatrix of M.

In Step 2, we assemble the quartet trees into a tree on the full set of
leaves. Step 1 is straightforward. The technique we use in Step 2 is
called the All Quartets Method.

We start with a known tree
>>> cfn = CFN_Tree(leaves=5)
>>> print(cfn)

Node: 0, substitution probability: 0
Node: 1, substitution probability: 0.4465340963982276
Node: 2, substitution probability: 0.1674607139638471
Node: 3, substitution probability: 0.17137831979024587
Node: 4, substitution probability: 0.3491805016323804
Node: 5, substitution probability: 0.12428938378084825
Node: 6, substitution probability: 0.1830304764268481
Node: 7, substitution probability: 0.3684792177646947
Node: 8, substitution probability: 0.3426407225165353

 /-1
-0|
 | /-3
 \2|
 | /-5
 \4|
 | /-7
 \6|
 \-8

from phylogeny.reconstruction import all_quartets_method

Now we infer it from it's distance matrix
using the all quartets method
>>> t = all_quartets_method(cfn.distance_matrix())
>>> print(t)

 /-5
 /-|
 | | /-1
 | \-|
--| \-3
 |
 | /-7
 \-|
 \-8

Looks good! Now, let’s test how it performs with the simulated
biological sequences

>>> cell_sequences

{7: 'AAAAAAAAAAGAAAAAAAATAAAAAAAAATATAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA',
 8: 'AAAAAAAAAAGAAAAAAAATAAAAAAAAATATAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA',
 9: 'AAAAAAAAAAGAAAAAAAATAAAAAAAAATATAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA',
 10: 'AAAAAAAAAAGAAAAAAAATAAAAAAAAATATAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'}

>>> m = DistanceMatrix.from_sequences(cell_sequences)
>>> t = all_quartets_method(m)
>>> print(t)

 /-7
 /-|
\-8
/-9
 \-|
 \-10

Compare with the real ancestry tree
>>> t = system.log.ancestry(prune_death=True)
>>> print(t)

 /-9
 /-|
\-10
/-7
 \-|
 \-8

Looks good too!! If you liked it, please contribute by adding more
models, more algorithms, or improving the existing codebase!

If you want to learn more about the algorithms, check the source files or
in the reference books.

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 phylogeny	

 	
 	
 phylogeny.core	

 	
 	
 phylogeny.core.distance	

 	
 	
 phylogeny.core.fpc	

 	
 	
 phylogeny.core.tree	

 	
 	
 phylogeny.models	

 	
 	
 phylogeny.models.cfn	

 	
 	
 phylogeny.reconstruction	

 	
 	
 phylogeny.reconstruction.allquartets	

 	
 	
 phylogeny.reconstruction.clocklike1	

 	
 	
 phylogeny.reconstruction.clocklike2	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | M
 | N
 | P
 | R
 | S
 | T
 | W
 | Z

A

 	
 	add_as_sibling() (phylogeny.core.tree.Tree method)

 	
 	all_quartets() (in module phylogeny.reconstruction.allquartets)

 	all_quartets_method() (in module phylogeny.reconstruction.allquartets)

C

 	
 	cfn_metric() (phylogeny.models.cfn.CFN_Tree static method)

 	
 	CFN_Tree (class in phylogeny.models.cfn)

D

 	
 	distance_matrix() (phylogeny.core.tree.Tree method)

 	DistanceMatrix (class in phylogeny.core.distance)

 	
 	distances_to() (phylogeny.core.distance.DistanceMatrix method)

 	draw_graph() (in module phylogeny.reconstruction.clocklike1)

E

 	
 	evolve_traits() (phylogeny.models.cfn.CFN_Tree method)

F

 	
 	four_point_condition() (in module phylogeny.core.fpc)

 	four_point_method() (in module phylogeny.reconstruction.allquartets)

 	fpc_sums() (in module phylogeny.core.fpc)

 	
 	from_newick() (phylogeny.core.tree.Tree class method)

 	from_quartet() (phylogeny.core.tree.Tree class method)

 	from_sequences() (phylogeny.core.distance.DistanceMatrix class method)

 	from_tree() (phylogeny.core.tree.Tree class method)

G

 	
 	get() (phylogeny.core.distance.DistanceMatrix method)

 	
 	get_graph() (in module phylogeny.reconstruction.clocklike1)

 	get_path() (in module phylogeny.reconstruction.clocklike1)

I

 	
 	induced_quartet() (in module phylogeny.reconstruction.allquartets)

 	infer_clocklike_tree1() (in module phylogeny.reconstruction.clocklike1)

 	
 	infer_clocklike_tree2() (in module phylogeny.reconstruction.clocklike2)

 	infer_siblings() (in module phylogeny.reconstruction.allquartets)

 	is_additive() (phylogeny.core.distance.DistanceMatrix method)

J

 	
 	join_trees() (phylogeny.core.tree.Tree class method)

M

 	
 	make_cherry_of() (phylogeny.core.tree.Tree class method)

 	
 	map_names_to_quartet() (in module phylogeny.reconstruction.allquartets)

 	max_edge_weight() (in module phylogeny.reconstruction.clocklike1)

N

 	
 	name_all() (phylogeny.core.distance.DistanceMatrix method)

P

 	
 	path_to_tree() (in module phylogeny.reconstruction.clocklike1)

 	phylogeny (module)

 	phylogeny.core (module)

 	phylogeny.core.distance (module)

 	phylogeny.core.fpc (module)

 	phylogeny.core.tree (module)

 	phylogeny.models (module)

 	
 	phylogeny.models.cfn (module)

 	phylogeny.reconstruction (module)

 	phylogeny.reconstruction.allquartets (module)

 	phylogeny.reconstruction.clocklike1 (module)

 	phylogeny.reconstruction.clocklike2 (module)

 	populate() (phylogeny.models.cfn.CFN_Tree method)

 	prune_leaves() (phylogeny.core.tree.Tree method)

R

 	
 	random_test() (in module phylogeny.models.cfn)

 	
 	remove() (phylogeny.core.distance.DistanceMatrix method)

 	replace_node() (phylogeny.core.tree.Tree static method)

S

 	
 	set() (phylogeny.core.distance.DistanceMatrix method)

 	show() (phylogeny.core.tree.Tree method)

 	
 	simple_distance() (in module phylogeny.core.distance)

 	swap() (in module phylogeny.models.cfn)

T

 	
 	total_nodes() (phylogeny.core.tree.Tree method)

 	trait_traverse() (phylogeny.models.cfn.CFN_Tree method)

 	
 	Tree (class in phylogeny.core.tree)

 	tree_from_quartets() (in module phylogeny.reconstruction.allquartets)

W

 	
 	weights_for() (in module phylogeny.reconstruction.clocklike1)

Z

 	
 	zeros() (phylogeny.core.distance.DistanceMatrix class method)

phylogeny

	phylogeny package
	Subpackages
	phylogeny.core package
	Submodules

	phylogeny.core.distance module

	phylogeny.core.fpc module

	phylogeny.core.tree module

	Module contents

	phylogeny.models package
	Submodules

	phylogeny.models.cfn module

	Module contents

	phylogeny.reconstruction package
	Submodules

	phylogeny.reconstruction.allquartets module

	phylogeny.reconstruction.clocklike1 module

	phylogeny.reconstruction.clocklike2 module

	Module contents

	Module contents

phylogeny.core package

Submodules

phylogeny.core.distance module

	
class phylogeny.core.distance.DistanceMatrix

	Bases: numpy.ndarray

Wrapper for the Numpy array class with methods proper of a
distance matrix.

For documentation for the Numpy array, read the Numpy documentation [http://www.numpy.org/].

	
distances_to(name)

	Get all the distances to the named sequence.

	
classmethod from_sequences(sequences, distance_fn=<function simple_distance>)

	From the given sequences, compute pairwise edit distances.

	
get(item)

	Get item by name.

	
is_additive(tolerance=0.01)

	Is the distances matrix additive?

Check the four point condition on each quartet of
indices of the matrix.

	
name_all()

	

	
remove(name)

	Return a new matrix with the column and row with that name deleted.

	
set(item, value)

	Set item by name.

	
classmethod zeros(n, names=None)

	Return a zeroed n by n matrix

	
phylogeny.core.distance.simple_distance(seq_1, seq_2)

	From two binary sequences, compute their distance.

phylogeny.core.fpc module

The four point condition.

The Four Point Condition holds for any additive matrix.

Let’s say we have the following unrooted tree:

1 -\ /- 3
 >--<
2 -/ \- 4

Let the distance between leaves ‘a’ and ‘b’ be D(a,b).
Consider the three following pairwise sums:

	D(1,2) + D(3,4)

	D(1,3) + D(2,4)

	D(1,4) + D(2,3)

The smallest of these sums has to be D(1,2)+D(3,4), since
it covers all the edges of the tree connecting the four
leaves, EXCEPT for the ones on the path separating 1 and 2
from 3 and 4. Furthermore, the two larger of the three
pairwise sums have to be identical, since they cover the
same set of edges.

The Four Point Condition is the statement that the two
largest values of the three pairwise distance sums are
the same.

	– Based on an explanation from the book:

	“Computational Phylogenetics. An introduction
to designing methods for phylogeny estimation”
by Tandy Warnow

	
phylogeny.core.fpc.four_point_condition(dist_matrix, idx_quartet=None, tolerance=0.01)

	The Four Point Condition is the statement that
the two largest values of the three pairwise
distance sums are the same.

	
phylogeny.core.fpc.fpc_sums(distances, idx_quartet=None)

	From a matrix of distances and a quartet of indices,
return the sums needed to check the four point condition.

phylogeny.core.tree module

	
class phylogeny.core.tree.Tree(*args, leaves=None, **kwargs)

	Bases: ete3.coretype.tree.TreeNode

Wrapper for the ETE Tree class adapted for the
purposes of phylogeny reconstruction.

For documentation for the ETE Tree, read the ETE3 documentation [http://etetoolkit.org/docs/latest/tutorial/index.html].

	
add_as_sibling(a, b)

	Add leaf a as sibling of b in the tree.

	
distance_matrix()

	Get the matrix of distances between each pair of leaves.

	
classmethod from_newick(newick, *args, **kwargs)

	Read from the newick representation.

	
classmethod from_quartet(quartet)

	Transform the quartet structure to a tree.

	
classmethod from_tree(tree, *args, **kwargs)

	Create a new instance based on an existing tree.

	
classmethod join_trees(a, b)

	Make a ‘cherry’ of the two trees a and b.

	
classmethod make_cherry_of(a, b)

	Get a cherry tree out of both items.

	
prune_leaves(to_stay)

	Prune tree branches to leave only the leaves in to_stay.

	
static replace_node(old, new)

	

	
show(mode=None, inline=False, styling=None, **kwargs)

	Display the tree.

	
total_nodes()

	

Module contents

phylogeny.models package

Submodules

phylogeny.models.cfn module

Module implementing the Cavender-Farris-Neymann stochastic tree model.

The model is based on the description by the book:

	Computational Phylogenetics.

	An introduction to designing methods for phylogeny estimation.
– by Tandy Warnow

The CFN model in words from the book:

	“The Cavender-Farris-Neyman (CFN) model describes how a trait (which

	can either be present or absent) evolves down a tree (Cavender,
1978; Farris, 1973; Neyman, 1971).

…a CFN model has a rooted binary tree T (i.e., a tree in which
every node is either a leaf or has two children) with numerical
parameters that describe the evolutionary process of a trait. Under
the CFN model, the probability of absence (0) or presence (1) is the
same at the root, but the state can change on the edges (also called
branches) of the tree. Thus, we associate a parameter p(e) to every
edge e in the tree, where p(e) denotes the probability that the
endpoints of the edge e have different states. In other words, p(e)
is the probability of changing state (from 1 to 0, or vice-versa)
… we require 0 < p(e) < 0.5.

Under the CFN model, a trait (which is also called a
“character”) evolves down the tree under this random process, and
hence attains a state at every node in the tree, and in particular
at the leaves of the tree. You could write a computer program for a
CFN model tree that would generate 0s and 1s at the leaves of the
tree; thus, CFN is a generative model.

Each time you ran the program you would get another pattern of 0s and
1s at the leaves of the tree. Thus, if you repeated the process 10
times, each time independently generating a new trait down the tree,
you would produce sequences of length 10 at the leaves of the tree.”

– from the book.

	
class phylogeny.models.cfn.CFN_Tree(*args, leaves=None, **kwargs)

	Bases: phylogeny.core.tree.Tree

A Cavender-Farris-Neymann stochastic tree model.

Usage:

Create a new empty tree.
>>> cfn = CFN_Tree()

Branch randomly until you have 5 leaves.
>>> cfn.populate(5)
>>> print(cfn)

 Node: 0, node probability: 0
 Node: 1, node probability: 0.2192846999188683
 Node: 2, node probability: 0.06144844447962278
 Node: 3, node probability: 0.14342505932071808
 Node: 4, node probability: 0.1370117188846906
 Node: 5, node probability: 0.44060196062669255
 Node: 6, node probability: 0.009555798385131098
 Node: 7, node probability: 0.48946332859444935
 Node: 8, node probability: 0.39505550345399304

 /-3
 /1|
 | | /-7
 |

 phylogeny.reconstruction package

phylogeny.reconstruction package

Submodules

phylogeny.reconstruction.allquartets module

All quartets method.

Given an n×n additive matrix M with n ≥ 5 associated to a
binary tree T with positive branch lengths, we can construct
T using a two-step technique that we now describe.

In Step 1, we compute a quartet tree on every four leaves by
applying the Four Point Method to each 4×4 submatrix of M.

In Step 2, we assemble the quartet trees into a tree on the
full set of leaves. Step 1 is straightforward. The technique
we use in Step 2 is called the “All Quartets Method”.

	
phylogeny.reconstruction.allquartets.all_quartets(dist_matrix, names=None)

	Get all inferred quartet subtrees.

	
phylogeny.reconstruction.allquartets.all_quartets_method(dist_matrix, names=None)

	Reconstruct the tree from the dist. matrix using the all quartets method.

	
phylogeny.reconstruction.allquartets.four_point_method(additive, names=None)

	Method for inferring a tree from a 4x4 additive matrix.

If we are given a 4×4 additive matrix ‘D’ that
corresponds to a tree ‘T’ with positive branch weights,
then we can easily compute ‘T’ from ‘D’: We calculate
the three pairwise sums from the four point condition,
we determine which of the three pairwise sums is the
smallest, and use that one to define the split for the
four leaves into two sets of two leaves each.

	
phylogeny.reconstruction.allquartets.induced_quartet(dist_matrix, idx_quartet=None)

	Get the induced quartet ordering of 4 items.

	
phylogeny.reconstruction.allquartets.infer_siblings(quartets)

	From the tree quartets, infer pairs of sibling leafs.

We search for a pair x,y of leaves that is always
together in any quartet that contains both x and y.
(In other words, for all a,b, any quartet on {x,y,a,b}
is ((x,y),(a,b))). Any pair of leaves that are siblings
in the quartets tree T will satisfy this property.

	
phylogeny.reconstruction.allquartets.map_names_to_quartet(quartet, names=None)

	Map the names to the quartet’s indices.

	
phylogeny.reconstruction.allquartets.tree_from_quartets(quartets)

	From the given quartets, assemble the tree.

phylogeny.reconstruction.clocklike1 module

This module presents an algorithm for reconstructing
the ultrametric tree corresponding to a matrix of
ultrametric distances.

The algorithm is the one presented by Dan Gusfield in:

http://web.cs.ucdavis.edu/~gusfield/ultraerrat/ultraerrat.html

Additional information can be found on his book:

Algorithms on Strings, Trees, and Sequences.

Usage:

An ultrametric matrix
>>> ultrametric = [[0, 8, 8, 5, 3],
 [8, 0, 3, 8, 8],
 [8, 3, 0, 8, 8],
 [5, 8, 8, 0, 5],
 [3, 8, 8, 5, 0]]
>>> nodes = ['A', 'B', 'C', 'D', 'E']

Get the tree
>>> t = infer_clocklike_tree1(ultrametric, nodes)
>>> print(t)

 /-A
 /-|
 /-| \-E
 | |
 --| \-D
 |
 | /-B
 \-|
 \-C

Algorithm description:

	“…here is another combinatorial algorithm that I claim is correct

	and that does run in O(n^2) time. The algorithm is described in terms
of a graph G, based on matrix D, but it can be implemented without an
explicit graph.

Let each row i of matrix D be represented by a node i in G, and each
edge (i,j) be given the value D(i,j). In O(n2) time, the algorithm
will find a very particular path in graph G:

Set N equal to all the indices 1 through n; set L to the empty path;
set i to any node.

Repeat n-1 times: begin remove i from N; find an index j in N such
that D(i,j) <= D(i,k) for any k in N. place edge (i,j) in the path L;
set i to j; end;

What this produces is a path L of exactly n edges, and the algorithm
can be implemented in O(n2) time. It turns out that L is a minimum
spanning tree of G, but that fact is not needed.

We will now use L to create the ultrametric tree recursively.

Concentrate on an edge (p,q) in the path L with the largest edge weight
of all edges in L, and let P be the set of nodes at or to the left of p
in L, and let Q be the set of nodes at or to the right of q in L. The
fact that D is an ultrametric matrix implies that for any pair of nodes
(i,j) where i is in P and j is in Q, D(i,j) = D(p,q). One way to prove
this is by induction on the number of edges between i and j in L
(applying the ultrametric condition that in any triangle, the max of the
three edge weights is not unique). What this means is that in the
ultrametric tree we are building (and in any ultrametric tree for D),
any pair of leaves (i,j) where i is in P and j is in Q must have their
least common ancestor at the root of the ultrametric tree, and that root
must be labelled D(p,q).

If there are k > 1 ties for the global max edge weight in L, then
removing those k edges creates k+1 subpaths of nodes, and applying the
above argument, any two nodes i and j which are in different subpaths
must have their least common ancestor at the root of the tree, which
again must be labeled D(p,q). Hence, any ultrametric tree T for D must
have exactly k+1 edges out of D, and the leaf set below any such edge
must be exactly the (distinct) set of nodes in one of the k+1 subpaths.

No matter what k is, removing the k max weight edges in L, and
partitioning N, takes only O(n) time.

To continue the description of the algorithm, we assume for convenience
that k = 1. Let LP and LQ denote the two subpaths created by removing
the max weight edge in L. Now we want to find an ultrametric tree for
set P and one for set Q; these two ultrametric trees will then be
attached to the root to creat the full ultrametric tree for D. But note
that we already have the needed paths LP and LQ that would be created if
we were to recursively apply the above method (clearly LP could result
if we applied the path building algorithm to P alone, and similarly for
LQ and Q). So we only need to find the max weight edge(s) in LP and the
max weight edge(s) in LQ. Those two edges can be found in O(n) total
time. Again, because the nodes were partitioned in the first step, this
time bound holds even for k > 1.

Continuing, we build the ultrametric tree in O(n2) total time.

Note that at each step of the algorithm, the node partitions that are
created, and the associated edges that are put into T, are forced. Hence
if D is an ultrametric matrix, the ultrametric tree T for D is unique.

” - Dan Gusfield.

	
phylogeny.reconstruction.clocklike1.draw_graph(g)

	Display an edge-weighted graph.

	
phylogeny.reconstruction.clocklike1.get_graph(ultrametric, nodes)

	From an ultrametric matrix, get the weights graph.

	
phylogeny.reconstruction.clocklike1.get_path(g, ultrametric, nodes)

	From the weights graph, get the path.

	
phylogeny.reconstruction.clocklike1.infer_clocklike_tree1(ultrametric, node_names=None)

	

	
phylogeny.reconstruction.clocklike1.max_edge_weight(L)

	Return the edge with the largest weight.

	
phylogeny.reconstruction.clocklike1.path_to_tree(P)

	

	
phylogeny.reconstruction.clocklike1.weights_for(matrix, nodes)

	Get the entries by node name.

phylogeny.reconstruction.clocklike2 module

Module implementing phylogeny estimation assuming clocklike evolution.

“An assumption that is sometimes made is that sequence
evolution is clocklike (also referred to as obeying
the strict molecular clock), which means that the
expected number of changes is proportional to time.
If we assume that the leaves represent extant (i.e.,
living) species, then under the assumption of a
strict molecular clock, the total expected number of
changes from the root to any leaf is the same. Under
the assumption of a strict molecular clock, the matrix
of expected distances between the leaves in the tree
has properties that make it “ultrametric”.”

	– From the book: “Computational Phylogenetics. An introduction

	to designing methods for phylogeny estimation” by Tandy Warnow

	
phylogeny.reconstruction.clocklike2.infer_clocklike_tree2(distances)

	Assumming the sequences evolved in a clocklike process,
infer the tree.

“One very natural approach to estimating the tree would
be to select as siblings the two sequences that are the
most similar to each other from the three possible pairs.
Because the sequence evolution model is clocklike, this
technique will correctly construct rooted three-leaf trees
with high probability. Furthermore, the method can even be
extended to work on trees with more than three leaves,
using recursion…

Hence, to estimate this tree, we would first compare all
pairs of sequences to find which pair is the most similar,
and we’d select ‘a’ and ‘b’ as this pair. We’d then correctly
infer that species ‘a’ and ‘b’ are siblings. We could then
remove one of these two sequences (say ‘a’), and reconstruct
the tree on what remains. Finally, we would add ‘a’ into the
tree we construct with the other vertices, by making it a
sibling to ‘b’.”

– From the book.

Module contents

 phylogeny package

phylogeny package

Subpackages

	phylogeny.core package
	Submodules

	phylogeny.core.distance module

	phylogeny.core.fpc module

	phylogeny.core.tree module

	Module contents

	phylogeny.models package
	Submodules

	phylogeny.models.cfn module

	Module contents

	phylogeny.reconstruction package
	Submodules

	phylogeny.reconstruction.allquartets module

	phylogeny.reconstruction.clocklike1 module

	phylogeny.reconstruction.clocklike2 module

	Module contents

Module contents

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/cfn_tree.png
——
0.775184

_static/plus.png

nav.xhtml

 Table of Contents

